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Executive Summary

This report describes the development of a database of aircraft fuel
burned and emissions from projected fleets of high speed civil transports
(HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT
fleets were calculated. Inventories of Year 2015 subsonic aircraft fleets in
service with these HSCT fleets were also calculated. These emissions
inventories were developed under the NASA High Speed Research Systems
Studies (HSRSS) contract NAS1-19360, Task Assignment 40.

The objective of this work was to evaluate the changes in geographical
distribution of the HSCT emissions as the fleet size grew from 500 to 1000
HSCTs. For this work, a new expanded HSCT network has been used and
flights projected using a market penetration analysis rather than assuming
equal penetration (as was assumed for the emission scenarios developed for
the 1993 AESA assessment ). Emission inventories on this network were
calculated for both Mach 2.0 and Mach 2.4 HSCT fleets with NOx cruise
emission indices of approximately 5 and 15 grams NOx/kilogram fuel.

These emissions inventories will be available for use by atmospheric
scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA)
modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2),
carbon monoxide, and hydrocarbons have been caiculated on a 1 degree
latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA
as electronic files. This report describes the assumptions and methodology for
the calculations and summarizes the results of these calculations.

The work presented here shows that the total global fuel burned and
emissions from a fleet of 500 HSCTs is not very different whether the expanded
HSCT network or the 1993 AESA assessment network is used. The
geographical distribution of emissions at stratospheric cruise is sensitive to the
market penetration assumptions used to distribute projected HSCT passenger
demand.

An increase in HSCT fleet size from 500 to 1000 units has been shown to
approximately double emissions at stratospheric cruise. However, as the fleet
grows, emissions in different geographical regions grow at different rates.
Consequently, stratospheric emissions in northern mid-latitudes are not
projected to double as the fleet size doubles, while emissions in the northern
tropics and southern hemisphere mid-latitudes are expected to more than
double.

For an HSCT combustor with a NOx emission index of 5, the analyses
show that the total NOx emissions below 13 kilometers altitude are not very
sensitive to the presence or absence of an HSCT fleet. This suggests that to
first-order the assessment of the effects of an HSCT fleet are largely decoupled
from the assessment of subsonic aircraft effects.



During this work, we discovered several errors made in our previous
study (NASA CR 4592) and present the corrected data in this report. For the
HSCT, it was found that the operating empty weight used in the emission
scenario calculation had been incorrectly entered into the analysis data file and
was not consistent with the performance data for the baseline model used in the
study. This was corrected and revised emission inventories for Mach 2.0 and
Mach 2.4 HSCTs on the 1993 AESA assessment network were calculated,
delivered to NASA Langley, and described in this report. The fuel bumed for
the revised Mach 2.4 HSCT scenario on the 1993 AESA assessment network
increased by 7% and the cruise altitude decreased by about 1100 feet when
compared with the results presented earlier in NASA CR 4592. In addition, the
fuel performance improvement factor for the very large aircraft (P900) projected
for 2015 was incorrectly implemented. This was corrected and revised 2015
subsonic aircraft emission scenarios are described in this report. This
correction increased the total projected fuel burned by a future all subsonic fleet
by 2 %, well below the uncertainty in projected future emissions.
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1. Introduction

A major goal of the NASA High Speed Research Program (HSRP) and of
the Boeing High Speed Civil Transport (HSCT) program is to design an HSCT
that will not cause a significant impact on the stratospheric ozone layer. To help
achieve that goal, NASA has funded the Atmospheric Effects of Stratospheric
Aircraft (AESA) project to assess the effect of a fleet of commercial supersonic
transports on the atmosphere. To support that assessment, Boeing was
contracted to calculate three-dimensional inventories of emissions from fleets of
HSCTs. Scenarios of projected subsonic air traffic, both with and without HSCT
fleets, were also calculated for use in the atmospheric assessment. Both HSCT
and subsonic fleets were projected for the year 2015.

Earlier projections of HSCT emission inventories used in the 1993 AESA
assessment were based on an average of Boeing and McDonnell Douglas
forecasts to project future passenger demand. (Baughcum, et. al,, 1994;
Wuebbles, et. al,, 1993; Landau, et. al., 1994) Simple ground rules were
defined to identify the accessible HSCT market and to create projected
departure schedules. Market penetration (the proportion of the passenger
demand captured by the HSCT) was assumed to be equal for all HSCT city
pairs. Emission scenarios were calculated for Mach 2.0 and Mach 2.4 HSCT
fleets by Boeing (Baughcum, et. al., 1994) and for Mach 1.6 by McDonnell
Douglas. (Landau, et. al., 1994)

Two-dimensional modeling calculations have shown that the HSCT
impact on the ozone layer depends on both the amount of NOx emissions
injected into the stratosphere and on the HSCT flight altitudes. (Albritton, et. al.,
1993; Stolarski and Wesoky, 1993). More recent calculations have shown that
the calculated impact depends on the geographical location as well.
(Considine, et. al., 1995) Their model predicts that flights in the tropics will
have a much larger impact than flights at mid-latitudes. Thus, in developing
emission scenarios, it is important that we realistically project the geographical
location of future flights, as well as the total quantity of emissions. It is also
important that we understand how sensitive these geographical distributions of
emissions are to our assumptions about the HSCT market.

The work presented herein is an extension of the earlier Boeing work
(Baughcum, et. al., 1994) of scheduled air traffic emissions. For this study, the
Boeing baseline forecast (Boeing, 1993) of passenger demand has been
projected to year 2015. A new HSCT route system and schedule have been
developed with HSCT passenger demand calculated via a market penetration
analysis, rather than assuming that penetrations of all markets will be equal.
The flights were then scheduled assuming a single universal airline. As with
the previous study, it was assumed that the HSCT would fly supersonically only
over water.



The work presented here is for fleets of approximately 500 and 1000
HSCTs in active flight operations. (The total number manufactured would be
higher to account for maintenance, inspections, etc.)

Future fieets of HSCTs must be able to compete economically with
subsonic aircraft; so,the HSCT will be utilized on routes which can take
advantage of its speed. Since it is anticipated that the HSCT will only fly
supersonically over water, this means that some routes will be more attractive
than others. In this study, the HSCT market capture for flights between
individual cities is calculated explicitly taking into account the time saved by
supersonic flights. It is believed that this will give a more realistic geographical
distribution of future HSCT emissions than was obtained with the scenarios
calculated for the 1993 AESA assessment, which assumed equal market
penetration for all city pairs which satisfied certain simple ground rules.

In order to evaluate how growth of an HSCT fleet would alter the
geographical distribution of HSCT emissions used in the AESA assessments,
schedules corresponding to the passenger demands of approximately 500 and
1000 active HSCTs were created. The emission inventories developed from
these schedules can then be used to evaluate how parametric changes in fleet
size affect the HSCT impact on the stratospheric ozone layer.

Fuel consumption and emissions of nitrogen oxides (NOx), carbon
monoxide (CO), and hydrocarbons (HC) were calculated for all flight segments
and are reported on a three-dimensional grid with a resolution of 1 degree
latitude x 1 degree longitude x 1 km altitude. Given the fuel bumed in each grid
cell, emissions of water vapor, carbon dioxide, and sulfur dioxide can be
determined from the fuel properties. The following scenarios were calculated:

* Projected 2015 HSCT traffic for 500 and 1000 Mach 2.4 HSCTs with
nominal NOx emission indices of 5 and 15 gm NOx/kg fuel burned at
cruise.

* Projected 2015 HSCT traffic for Mach 2.0 HSCTs with nominal NOy
emission indices of 5 and 15 gm NOx/kg fuel burned at cruise
(passenger demand corresponding to 500 and 1000 Mach 2.4 HSCTs).

* Projected 2015 scheduled subsonic aircraft (assuming no HSCT fleet
exists).

* Projected 2015 scheduled subsonic aircraft (assuming an HSCT fleet
with passenger demand corresponding to 500 Mach 2.4 HSCTs was

flying).

* Projected 2015 scheduled subsonic aircraft (assuming an HSCT fleet
with passenger demand corresponding to 1000 Mach 2.4 HSCTs was

flying).



The fuel burned and emission characteristics of the HSCT and future
subsonic aircraft were based on estimated performance. The HSCT
performance and emissions were the best estimate available at the beginning
of this study and were "frozen" in order to develop new emission scenarios in
time for the 1995 AESA assessment. Since then, preliminary design work has
continued on both the airframe and the engine. The final design of the HSCT
will likely have some characteristics different from those assumed for this study;
hopefully, it will be more fuel efficient. The HSCT emission projections are
based on the HSRP program goal and the estimates of the engine companies
and are treated parametrically in this study and in the AESA assessment. As
combustor rig test data becomes available, it will be possible to better refine
these projections.

The details of the emission calculation process are described in NASA
CR-4592 (Baughcum, et. al., 1994) and will only be summarized in this report.
The results obtained in this study are compared with the emission scenarios
calculated for the 1993 AESA assessment (Baughcum, et. al., 1994). The
effects of fleet growth on the geographical distribution of HSCT emissions are
analyzed and discussed.

During this work, we discovered several errors made in our previous -
study and present the corrected data in this report. For the HSCT, it was found
that the operating empty weight used in the emission scenario calculation had
been incorrectly entered into the analysis data file and was not consistent with
the performance data for the baseline model used in the study. This was
corrected and revised emission inventories for Mach 2.0 and Mach 2.4 HSCTs
on the 1993 AESA assessment network were calculated, delivered to NASA
Langley, and described in this report. In addition, the fuel performance
improvement factor for the very large aircraft (P900) projected for 2015 was
incorrectly implemented. This was corrected and revised 2015 subsonic aircraft
emission scenarios are described in this report.

The work on HSCT and Year 2015 emission scenarios described in this
report was conducted under NASA Langley Contract NAS1-19360, Task 40.
The NASA Langley Task Manager was Donald L. Maiden.

Within the Boeing HSCT engineering group, overall program
management was provided by Thomas Derbyshire, John D. Vachal, and John
H. Gerstle. The principal investigator of the task was Steven L. Baughcum.
Chief contributors were Stephen C. Henderson, Terry Higman, Thomas T.
Odell, and Richard Bateman in market analysis; Peter S. Hertel in computer
support; and Debra R. Maggiora in data analysis.



2.0 New Expanded HSCT Network
2.1 Total Passenger Demand Forecast for 2015

The total passenger demand forecast for the year 2015 was created by
escalating 1991 reported regional flow passenger demand data using the
annual growth rates developed by Boeing and published in the 1993 Current
Market Outlook (Boeing, 1993). This yearly publication shows the Boeing
Commercial Airplane Group's traffic and airplane demand forecasts. The
results of this forecast, including regional flow growth rates and passenger
demand (revenue passenger miles or RPMs), are summarized in Table 2-1
below. A more detailed table of the passenger demand for each of the forecast
regions is shown on Appendix A, with the interim years of 1995, 2000, 2005 and
2010 also shown, along with the interim year-to-year growth rates.

Table 2-1. World Traffic Forecast

Average Annual

1991 Growth Rate 2015
Regional Flow RPMs 1991- RPMs
(millions) 2015 (millions)

Intra & Domestic N. America 358,741 4.01% 921,565
N. America-Europe 121,400 4.78% 372,129
N. America-Asia/Pacific 87,065 7.03% 445,013
Other N. America 3,565 4.08% 9,306
N. America-Latin America 36,476 5.20% 123,092
Intra & Domestic Europe 148,216 4.62% 437,999
Europe-Asia/Pacific 46,430 8.05% 297,690
Europe-indian Sub Continent 9,718 3.54% 22,376
Europe-Mid East 19,5678 5.07% 64,163
Europe-Africa 25,811 4.48% 73,850
Europe-Latin America 26,869 5.34% 93,627
intra & Domestic Asia/Pacific 86,003 7.92% 535,482
Misc. Long Range 40,348 5.70% 152,698
Japan 33,773 4.16% 89,918
Intra & Dom Indian Sub Continent 6,779 5.81% 26,316
Other Indian Subcontinent 14,261 4.75% 43,461
Intra & Domestic Mid East/Africa 18,455 5.01% 59,695
Other African 8,002 5.38% 28,163
Intra & Domestic Latin America 27,023 5.26% 92,463
CIS intemational 13,842 3.70% 33,098
MAC Charter 5,657 -2.36% 3,191
Total 1,138,012 5.29% 3,925,296




2.2 HSCT Universal Route System

The "Universal" HSCT route system is meant to simulate the operation of
HSCTs as a mature fleet in a global airline network. The "Universal" system
can be considered the sum of several global airlines, atthough it it scheduled as
if it is a single airline. This approach can be justified by making the assumption
that in the future, airline alliances and code-sharing will be more extensive than
today (particularly among international airlines).

A "Universal" HSCT route system was originally developed as part of the
1993 AESA HSCT assessment (Baughcum, et. al., 1994). The route system
used in this study is based on the original system, but has been enlarged and
refined to add many more city-pairs and to provide more efficient land-avoiding
flight tracks. Gateway cities were established in the countries of each of the
regions included in the regional traffic flow forecasts and assumed to be the
focus of HSCT flights in year 2015. Thus HSCT flights from Britain are assumed
to operate from London, flights from France operate from Paris, etc. Some
countries were given more than one gateway city, due to the size of the market
and/or the size of the country. (For example, the United States has 18
gateways, Japan 2 gateways, Australia and Germany 3 gateways each)

A list of the assumed gateway cities for HSCT operations is shown in
Appendix B.

The total year 2015 world passenger demand (measured as passengers)
was distributed among the gateway city-pairs in each region by using the share
of the total passenger available seat miles (ASM) that each city pair included in
the regional flows generated in 1993 (as derived from the Official Airline Guide
schedules). For each city-pair in each region, total passenger demand in 2015
was forecast as follows:

Passenger Demand ¢ity-paR, 2015 =

(RPM gegionaL FLow, 2015 X (ASMciry_pair/ASMRegion)19es )/Distance ciry.pair

2.3 HSCT Passenger Traffic Demand - Market Penetration

Due to the operating characteristics of the HSCT (sonic boom restrictions
and high operating costs, particularly on short routes), only a certain subset of
the total regional passenger demands are candidates for HSCT service. (U.S.
Domestic, Intra Europe, and the domestic demand of other regions are
excluded, for example). The suitability of the HSCT for the remaining passenger
demand must be determined according to some logical assessment criteria.

In the previous 1993 AESA HSCT emission database study (Baughcum,
et. al., 1994), routes for HSCT service were selected according to a set of
“static" criteria mutually agreed upon between Boeing and McDonnell Douglas.
Routes were selected using the following ground rules:



No supersonic flight over land

Flight distance must be greater than 2000 nautical miles

No more than 50% over land routing

No more than 20% diversion from great circle routing

Passenger demand must be sufficient to support at least one flight/day at
70% load factor

® & o o o

Once the routes that satisfied these criteria were selected, equal market
penetration of the HSCT was assumed on all markets. The penetration level
was adjusted to produce the 500 Mach 2.4 airplane fleet size used in that study.

One of the goals of the current fleet growth study is to determine how an
increasing fleet of HSCT's would change the global distribution of emissions.
Therefore, this study does not use a "static* set of criteria for determining the
proportion of city-pair demand likely to be captured by the HSCT. Instead,
demand captured by the HSCT is assumed to depend only on travel time saved
and the fare differential over a subsonic airplane serving the same city-pair.
(The travel time saved is in tum determined by the routing required to minimize
flight over land, see Section 2.4.) HSCT demand capture in this study was
determined by a proprietary market penetration model developed within
Boeing. The proportion of each city-pair market captured by the HSCT was
found by:

P =fR,T.F.ZLmin)

where

P = percent of total passenger demand carried by the HSCT,

R = range of the HSCT,

T = Trip time saved versus a subsonic airplane,

F = Fare premium over the subsonic airplane,

Z = stop factor (whether the HSCT flight is non-stop or not), and
Lmin = the minimum load factor allowed on a flight.

The only explicit constraint operating in the penetration model is the prohibition
of supersonic flight over land.

As the amount of time saved increased or the fare premium decreased,
or the number of stops decreased, the proportion of the passenger demand
carried by the HSCT increased. If the application of the penetration model
lowered the HSCT passenger demand on a city-pair to less than 180
passengers per day, that city-pair was dropped from the HSCT system. The
fare premium parameter (F) of the model was first adjusted so that the
passenger demand carried by the HSCT in 2015 required approximately 500
Mach 2.4 airplanes, forming the baseline case for the calculation of HSCT
emissions distribution. The fare premium parameter was then reduced so that
the increased passenger demand required approximately 1000 Mach 2.4
airplanes, creating the alternate case. The average load factor was 65%.



The higher demand carried by the 1000 airplane fleet came from both an
increased penetration on the same markets served by the 500 airplane fleet
and an increase in the number of city-pairs served. The city-pairs, number of
departures and other system data are listed in Appendix C for the 500 and 1000
unit HSCT fleets. The route system maps for fleets of 500 and 1000 HSCTs are
shown in Figures 2-1 and 2-2, respectively. The routes added as the fleet grew
from 500 to 1000 are shown in Figure 2-3.

Emission inventories of HSCT airplanes designed with cruise speeds of
Mach 2.0 using the same route systems defined by the Mach 2.4 airplanes were
also calculated. Passenger demand levels and route systems which required
nominally 500 (actually 499) and nominally 1000 (actually 991) Mach 2.4
airplanes required 528 and 1062 Mach 2.0 airplanes, respectively.
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Figure 2-1. Universal Network Route System, 500 HSCT fleet



1994 EMISSIONS ROUTE SYSTEM
1000 AIRPLANE HSCT FLEET

Figure 2-2. Universal Network Route System, 1000 HSCT fieet

8



1994 EMISSIONS ROUTE SYSTEM
ROUTES ADDED BY INCREASING FLEET TO 1000

Figure 2-3. Universal Network Route System, New Routes added when
increasing fleet to 1000 HSCTs.



2.4 HSCT Flight Paths - Waypoint Routing

As was noted previously, the amount of trip time saved by the HSCT
versus a subsonic airplane serving the same city-pair is one of the determinants
of HSCT market penetration. Since it is assumed that the HSCT must fly at
subsonic speeds over land masses, each potential HSCT city-pair route was
examined to find the reasonable routing which -minimized (or at least reduced)
the percentage of the flight spent over land. The flight routing was
accomplished by establishing "waypoints®, a set of specific latitude-longitude
positions which defined the HSCT flight path. (The HSCT flight path between
waypoints was flown as a great circle.)

As an example, consider HSCT flights from Frankfurt (FRA) to Bangkok
(BKK) (See Figure 2-4). The shortest (great circle) flight path is 4841 nautical
miles, all over land and therefore flown subsonically. The flight path between
BKK and FRA can be altered by requiring the HSCT to fly between *waypoints”®,
established at defined latitude-longitude positions designed to minimize the
amount of overland flight. As shown in Figure 2-4, waypoints can be used to
route the HSCT subsonically from Frankfurt to near Venice, then supersonically
down the Adriatic, across the Mediterranean to the Sinai, subsonically across
the Arabian peninsula, then supersonically again around India to Bangkok.
This new path reduces the amount of flight overland to only 1993 nautical miles,
but increases the total flight path to 6130 nautical miles, a distance greater than
the 5000 nautical design range of the study airplane. Flying this path requires a
stop at Bahrain (BAH) to refuel (and pick up passengers). After the Bahrain
stop, the HSCT resumes the flight as defined above. The new path (with a stop)
adds 28% to total miles flown, but reduces the subsonic flight portion of the path
by 62%. (See Table 2-2)

Table 2-2. Example of waypoint routing - Frankfurt to Bangkok

Great Flight
Route Segment Circle Path Supersonic Subsonic
Distance Distance  Distance Distance
(nmi) (nmi) (nmi) {nmi)
Frankfurt - Bangkok 4,841 4,841 0 4,841
(Great Circle Path)
Frankfurt - Bangkok 4,841 6,130 4,137 1,993
(Direct, HSCT Waypoints)
Frankfurt - Bahrain - 5,292 6,181 4,319 1,862

Bangkok
(Stop at Bahrain, HSCT Waypoints)

Percent Change in Flight Path 28% -62%
from direct Great Circle
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FRANKFURT - BANGKOK HSCT FLIGHT PATHS
EXAMPLE OF WAYPOINT ROUTING

Figure 2-4. Example of Waypoint Routing
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The above example shows a somewhat extreme change in flight path.
Using the new waypoint routing and the market penetration model, the HSCT
route system used in this study is very efficient - adding only about 5% to total
route miles flown. 90% of HSCT trips are penalized less than 10% in flight path
distance over the minimum Great Circle distance (Figure 2-5). 90% of HSCT
trips also operate at 60% or less of subsonic block time (Block time is the total
time for the flight including roll back, taxi-out, flying, and taxi-in. Subsonic block
time is the block time that a subsonic aircraft would require.) Almost 60% of
HSCT trips operate at less than half of subsonic block time (These statistics for
for the 500 airplane fleet) ( Figure 2-6). The 1000 airplane fleet, with its greater
market penetration, includes more routes which are less desirable from an
HSCT efficiency standpoint - lowering the overall waypoint routing efficiency
and fleet time savings by a small amount. -Waypoints and their positions for all
HSCT routes flown are compiled as part of the flight path listing in Appendix D.

Waypoint Routing Efficiency

100
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PATH DISTANCE AS % GREAT CIRCLE

Figure 2-5 Waypoint Routing Efficiency
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2.5 HSCT Scheduling

A description of the method of scheduling the HSCT fleet is provided in
Appendix E. The resulting utilization statistics are summarized below. The
nonlinear nature of both the penetration model and the scheduling model made
it difficult to exactly achieve the goal of 500 and 1000 airplane HSCT fleets.
The fleet size was adjusted by varying the fare premium in the penetration
model so that the nominal "500" unit Mach 2.4 fleet was actually 499 units and
the nominal "1000" unit fleet was actually 991 units. These were felt to be close
enough to the target fleet sizes for these parametric studies and additional
iterations were not performed.

Table 2-3. Utilization statistics for the universal airline HSCT network.

Mach 2.4 Mach 2.0
Units 499 991 528 1062
Average Stage Length - n.m. 35586 3026 35565 3026
Average Daily Use (hours) 21.95 22.24 21.87 22.17
Average Hours/Segment 3.67 3.30 4.07 3.62
Average Hours/Trip 4.26 3.78 4.71 4.13
Average Block Hours/Day 16.00 16.10 16.75 16.49
Percent of Subsonic Trip Time 49.97 53.25 55.21 58.28
Network Flight Path % of GCD 103.98 106.16 103.98 106.16
% of Trip in Supersonic Cruise 75.16 71.18 78.66 74.92
% of Trip in Subsonic Cruise 12.52 15.46 12.54 15.49
Percent Nonstop Trips 87.88 89.39 87.88 89.39
Average Trip Load Factor 65.16 65.09 65.16 65.09
Annual RPMs (Billion) 551 1,043 551 1,043
Annual ASMs (Billion) 846 1,602 846 1,602
Annual Departures 793,510 1,765,140 793,510 1,765,140
Annual RAMs (GCD - Million) 2,713 5,031 2,713 5,031
Annual RAMs (Path - Million) 2,821 5,341 2,821 5,341

Because of its speed, the HSCT has the ability to serve a large set of

cities and still remain within the preference/curfew time "windows®, which are
always defined in local time.

2.6 2015 Subsonic Traffic

Subsonic air traffic for the year 2015 was projected using the passenger
demand forecasts used in NASA Contractor Report 4592 (Baughcum, et. al.,
1994). Displacement of subsonic traffic by the HSCT passenger demand was
included as described in the earlier study.
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3.0 Emissions Calculation Procedure
3.1 Overview of Emissions Calculation

The primary emissions from aircraft engines are water vapor (H20) and
carbon dioxide (CO2) produced by the combustion of jet fuel. Nitrogen oxides
(NOx), carbon monoxide (CO) and hydrocarbons are also produced in the
combustors and vary in quantity according to the temperature, pressure, and
other combustor conditions. Nitrogen oxides consist of both nitric oxide (NO)
and nitrogen dioxides (NO2). Sulfur dioxide (SO2) may also be produced due
to sulfur impurities in jet fuel. Soot is also produced, particularly at high power
settings, but its characterization is beyond the scope of the current work.

Emission indices of water, carbon monoxide, and sulfur dioxide are
determined by the jet fuel properties. These were discussed in our previous
contractor report (Baughcum, et. al.,, 1994) and are summarized below.

Table 3-1. Recommended emission indices in units of grams
emission/kilogram fuel for 1990 and 2015.

Emission Index
Emission 1990 2015
Carbon Dioxide (CO2) 3155 3155
_Vllater (H20) ~ 1237 1237
Sulfur dioxide (S02) 0.8 0.4

The emission levels from aircraft engines are discussed by Miake-Lye
(Miake-Lye, et. al., 1992). The emissions are characterized in terms of an
emission index in units of grams of emission per kilogram of fuel burned. For
NOx, the emission index [EI(NOXx)] is given as gram equivalent NO2 to avoid
ambiguity. Although hydrocarbon measurements of aircraft emissions by
species have been made (Spicer, et. al,, 1992), only total hydrocarbon
emissions are considered in this work, with the hydrocarbon emission index
[EI(HC)] given as equivalent methane (CH4).

Nitrogen oxides are produced in the high temperature regions of the
combustor primarily through the thermal dissociation of oxygen followed by
oxygen atom reactions with molecular nitrogen. Thus, the NOx produced by an
aircraft engine is sensitive to the length of the combustor, the pressure, and the
temperature within the combustor. The emissions vary with the power setting of
the engine (highest at high thrust conditions). By contrast, carbon monoxide
and hydrocarbon emissions are highest at low power settings when the
temperature of the engine is low and incomplete combustion occurs.

15



Once a schedule of city-pairs and departures was determined, the next
step in the development of the scenario data set was to use aircraft/engine
performance and emissions data to calculate the fuel use and emissions as a
function of altitude and location. For each mission, fuel consumption and
emissions are calculated including all the flight segments (taxi-out, takeoff,
climb, cruise, descent, landing, taxi-in), distributing the emissions in space
along the route between city-pairs. The emissions were then combined for all
flights into the resulting three-dimensional database.

3.2 HSCT Description

The Mach 2.4 HSCT scenarios were calculated using the Boeing
preliminary design model 1080-924 with four Pratt & Whitney STJ989 turbine
bypass engines (TBE) with mixed compression translating center body
(MCTCB2) inlets and two-dimensional semi-stowable (SS2D) nozzles. The
aircraft has a cranked-arrow wing planform (see Figure 3-1) and a mostly
composite structure. Overall body length is approximately 314 feet with a wing
span of 139 feet. It was designed to carry 309 passengers for a range of 5000

nautical miles.

The Mach 2.0 HSCT scenarios were developed based on the preliminary
design model 1080-938 with four P&W STJ1016 turbine bypass engines with
MCTCB2 inlets and SS2D nozzles. The characteristics of both these aircraft

are summarized in Table 3-2.

Table 3-2. Summary of HSCT aircraft characteristics used in the
development of the Mach 2.0 and Mach 2.4 HSCT emission

scenarios.

Mach 2.4 Mach 2.0
Model Number 1080-924 1080-938
Engine PW STJ989 PW STJ1016
Range (nautical miles) 5000 5000
Passengers 309 309
Design Payload (Ibs) 64,890 64,890
Max. Takeoff Weight (Ibs) 784,608 802,872
Wing Span (ft) 139 140
Wing Area (sq. ft.) 8180 8260
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Model 1080-924

Span
- it L
. 139 ft

Configuration Description:

Maximum takeoff weight 784,600 pounds

Wing Area 8,180 square feet

Engine STJ989

Payload 309 passengers, tri-class
Range 5,000 nmi - supersonic cruise

Figure 3-1. HSCT General Characteristics
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The performance and emission characteristics for both Mach 2.0 and 2.4
were the same as those used as in the previous NASA contract work.
(Baughcum, et. al,, 1994) However, it was found that the operating empty
weights used in the previous emission scenario calculations had been
incorrectly entered into the analysis data file and were not consistent with the
performance data for the baseline model used in the study. This was corrected
and revised emission inventories for Mach 2.0 and Mach 2.4 HSCTs on the
1993 AESA assessment network were calculated and delivered to NASA
Langley. In this report, these revised 1993 AESA assessment scenarios are
summarized and compared to the present universal airline results.

Emissions data for NOx, CO, and hydrocarbons were provided by GE/P&W
for a generic HSCT combustor with a nominal NOx emission index at
supersonic cruise of approximately 5 gm NOx (as NO2)/kg fuel. Nitrogen
oxides, carbon monoxide, and hydrocarbon emission levels were calculated
from these data as a function of power setting and altitude. A similar calculation
was completed to scale to a nominal cruise El (NOx)=15 scenario. For this
scaling, the combustor was assumed to operate as a conventional combustor at
low power settings and as an advanced low-NOyx combustor at higher settings.
Based on discussions with both engine companies, the EI(NOyx) for this case
was unchanged at low power settings and increased by a factor of 3 at higher
thrust settings.

3.3 Mission Profiles

The mission profile procedures were described in detail in our previous
NASA contractor report (Baughcum, et. al.,, 1994). The basic HSCT mission
profile was assumed as follows:

10 minute taxi-out

all engine takeoff ground-roll and liftoff

climbout to 1500 feet and accelerate

climb to optimum cruise altitude (subsonic or supersonic, depending on
whether over land or water)

climbing supersonic cruise at constant Mach

descent to 1500 feet

approach and land

5 minute taxi-in

For a given HSCT model, fuel burned and emissions data were calculated
for parametric mission cases: various takeoff weights (in increments of 50,000
pounds), two passenger-loading factors (100% and 65%), and with two cruise
speeds (Mach 2.4 and Mach 0.9). These subsonic and supersonic mission
profiles of varying range were used with a regression analysis to develop
generalized performance for each HSCT mission segment as a function of
weight. The details of this analysis were described in our previous NASA
contractor report. (Baughcum, et. al., 1994)
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HSCT flight profiles of fuel burn and emissions were calculated from these
performance and emissions data for each HSCT mission. These profiles
combined with projected HSCT flight frequencies were then used to calculate
the three-dimensional database, as described in our previous contractor report.
(Baughcum, et. al.,, 1994)

When calculating the flight profiles, all aircraft were assumed to fly
according to design performance. For subsonic aircraft, cruise altitudes were
calculated as a climbing cruise with the optimum altitude determined by the
weight of the aircraft. For the HSCT, supersonic flight was aliowed only over
water and thus the mission profiles were more complicated than for subsonic
aircraft.

Design optimum flight profiles between city-pairs were used to distribute
emissions during takeoff, subsonic and supersonic climb and cruise, and
descent. Based on these mission profiles, the calculated fuel burned and
emissions were then transformed onto the database grid. Two missions, which
are representative of the way in which an actual HSCT would be flown, are
shown in Figures 3-2 and 3-3.

The simplest mission (Figure 3-2) is a flight almost exclusively over
water, such as Seattle to Tokyo. The HSCT would take off and climb
subsonically and then supersonically to a supersonic cruise altitude. It would
then fly at supersonic cruise at the optimum altitude determined by its gross
weight. As it approached Tokyo, it would descend and land. The cumulative
fraction of the total NOx emissions is plotted on the right axis. The plot
illustrates that approximately 40% of the NOyx emissions would occur during
takeoff, subsonic climb, and supersonic climb prior to supersonic cruise.
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Figure 3-2. Mission profile for Mach 2.4 HSCT from Seattle to Tokyo.

A more complicated but still common mission is a flight in which one leg
would be flown subsonically over land. This is illustrated in Figure 3-3 for a flight
from Seattle to London. The HSCT would take off and climb to subsonic cruise
altitudes. It would then cruise at subsonic speeds until it reached Hudson Bay
where it would begin to climb supersonically. The HSCT would then cruise at
supersonic speeds (altitude determined by the optimum performance) until
descending near London. An even larger fraction (approximately 60%) of the
NOx emissions would occur during the subsonic climb, subsonic cruise, and
supersonic climb prior to supersonic cruise.

A still more complicated mission, which was included in the calculations
but not shown graphically, is a flight in which the aircraft might descend and
climb several times to avoid flying supersonically over land. An example would
be the Frankfurt to Bangkok route. In this case, the HSCT would fly subsonically
over Europe, supersonically over the Mediterranean, subsonically over Arabia
(stopping in Bahrain) supersonically over the Indian Ocean, and then
subsonically inland over the Malay peninsula. Because of the high fuel
consumption of supersonic climbs, such flight profiles were kept to a minimum
in the scenario development.
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Figure 3-3. Mission profile for Mach 2.4 HSCT from Seattle to London.

3.4 Emission Calculation Procedures

All aircraft were assumed to fly according to design optimum performance.
Altitudes and mission profiles were calculated based on the performance of the
aircraft for its mission weight. Air traffic control constraints on routings were not
considered. For each aircraft type considered, a separate three-dimensional
data set of fuel burned and emissions was calculated. Subsonic aircraft were
flown along great circle routes between cities. For the HSCT, routing between
waypoints to avoid supersonic flight over land was used for many of the city-
pairs. The HSCT was flown along great circle routes between these waypoints.
For all flights, prevailing winds were not considered, based on the assumption
that wind effects would largely be canceled out for round trips.

To calculate the global inventory of aircraft emissions, a computer model
was developed which basically combines scheduling data (city pairs,
departures, aircraft type) with aircraft performance and emissions data. The
Global Atmospheric Emissions Code (GAEC) computer model was used to
calculate fuel burned and emissions from files of airplane performance and
engine emissions data. The aircraft performance file contains detailed
performance input data for a wide range of operating conditions. Each engine
emission input file contains emission indices tabulated as a function of the fuel
flow rate. The GAEC model was described in more detail in the earlier report
(Baughcum, et. al., 1994).
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For each route flown by the airplane/engine type, the takeoff gross weight
required was calculated as a function of the city-pair route distance. The fuel
burned was calculated for the following flight segments:

Taxi-out

Takeoff

Climbout

Subsonic Climb
Subsonic Cruise
Supersonic Climbout
Supersonic Cruise
Supersonic Descent
Descent

Approach and Land
Taxi-in

For year 2015 subsonic aircraft, emissions of nitrogen oxides (NOx),
hydrocarbons (HC) and carbon monoxide (CO) were projected from the ground
level emission indices reported to the International Civil Aviation Organization
(ICAOQ) for current aircraft. These measurements are reported at four thrust
settings. The Boeing fuel flow correlation methodology was used to calculate
emission indices for different flight phases, corrected for ambient temperature,
pressure, and humidity. (Baughcum, et. al., 1994; R. L. Martin, C. A. Oncina,
and J. Zeeben, private communication). This methodology will be described in
more detail in a future NASA contractor report describing the development of
subsonic aircraft emission inventories for each month of 1992. (S. L.
Baughcum, T. G. Tritz, and S. C. Henderson, private communication)

Subsonic aircraft emission inventories were calculated using the same
technology improvements as reported in NASA CR-4592 (Baughcum, et. al.,
1994) except that a small error for the largest airplane type (P900) was
discovered. The technology improvement factor for fuel flow given in Table 6-4
of NASA CR-4592 for the P900 aircraft had not been correctly used in the
previous calculation. This was corrected so that the calculations are now
consistent with the improvement factors shown in NASA CR-4592. As
described later in this report, this makes only an approximately 2% change in
the fuel use projected for the 2015 all subsonic fleet. Emission inventories for
scheduled subsonic air traffic were calculated for the cases of fleets of 0,
approximately 500, and approximately 1000 HSCTs on the universal airline
network. Displacement of subsonic air traffic by HSCTs on individual routes
was explicitly taken into account. The results are described in Sections 4 and 5
ot this report.

Distributions of fuel usage and emissions were calculated for 1° latitude x
1° longitude x 1 km altitude cells. The altitudes used are pressure altitudes, not
geometrical aftitudes. The altitude corresponds to the geopotential altitudes of
the U.S. Standard Atmosphere temperature and pressure profile and is thus
pressure-gridded data. (U. S. Standard Atmosphere,1976) Commercial aircraft
measure their altitudes using pressure altimeters. For each city-pair, the total
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route distance was calculated. The fuel burn rate and airplane gross weight
were then calculated at discrete distances along the route path which
corresponded to points where the airplane entered or left a cell (crossed any of
the cells boundaries) or points where a transition in flight conditions occurred
(climbout/climb, climb/cruise, cruise/descent, descent/approach and land, taxi-
out/climbout, approach and land/taxi-in). The fuel burn rate would change
dramatically at these transition points.

The emissions were calculated for each flight segment between the above
described discrete points using the fuel burn rate within the segment. The total
fuel burned in the segment was calculated as the difference in airplane gross
weight at the segment end-points. The emissions were then assigned to a cell
based on the cootdinates of the endpoints.
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4.0 Emission Inventory Results

A summary of the network statistics is shown in Table 4-1. An increase in
the size 'of the HSCT fleet results in a greater number of city pairs included in
the network. To satisty the same passenger demand, a Mach 2.0 HSCT fleet

requires about 6% more aircraft than needed for Mach 2.4 and flies at

supersonic cruise about 4000 feet lower.

Doubling the size of the fleet results in an approximate doubling of the
number of departures and an approximate doubling in the global fuel burn for
the fleet. Comparison of the departure frequencies shown in Appendix C
indicates that doubling the fleet size increases the flight frequencies on some
routes but not on others, since it is sensitive to the market penetration analyses.
Thus, changes in the geographical distribution of emissions may occur upon
fleet growth. This will be discussed in more depth in Section 5.

The minimum altitudes shown in Table 4-1 correspond to the lowest
altitudes at which supersonic cruise is reached. Because the Mach 2.4 HSCT
must climb to higher altitudes which takes both time and distance, the Mach 2.0
is able to supersonically cruise on some segments for which the Mach 2.4

aircraft cannot.

Table 4-1. Summary of departure statistics for HSCT networks.

1993 AESA
Assessment  New Universal New Universal

Network Network Network

(revised) "500" "1000"
Mach 2.4
Number of Aircraft 500 499 991
Number of city pairs 193 243 392
Total daily departures 2,192 2,174 4,836
Total distance (miles/day) 7,458,802 7,728,939 14,632,996
Total Fuel (million Ibs/day) 493.03 509.46 961.33
Maximum flight altitude (feet) 67,904 67,854 67,865
Minimum cruise altitude (feet) 57,722 57,547 57,647
Mach 2.0
Number of Aircraft 532 528 1062
Number of city pairs 193 243 392
Total daily departures 2,192 2,174 4,836
Total distance (miles/day) 7,458,802 7,728,939 14,632,996
Total Fuel (million Ibs/day) 504.79 524.27 979.92
Maximum flight altitude (feet) 63,956 63,907 63,920
Minimum cruise altitude (feet) 52,881 53,674 53,674
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The fuel use and emissions for the different scenarios considered are
summarized in Table 4-2 below. As shown below, the change from the simple
ground rules to the market-driven universal airline network has only a small
effect on the global fuel usage and NOx emissions for a fleet of 500 HSCTs.

The biggest changes occurred in the geographical distribution of the emissions.

Table 4-2. Summary of fuel use and emissions for the different scenarios.

Mach EI(NOx) Number Fuel NOXx HC co
Number of HSCTs Network {kg/yr) (kg/yr) (kg/yr) (kglyr)
Mach 2.4 fleet
2.4 5 500 1993 AESA 8.16E+10 5.37E+08 2.99E+07 2.42E+08
2.4 5 499 universal 8.21E+10 5.35E+08 2.97E+07 2.41E+08
2.4 5 991 universal 1.57E+11 1.04E+09 5.88E+07 4.76E+08
2.4 15 500 1993 AESA 8.16E+10 1.46E+09 2.99E+07 2.42E+08
24 15 499 universal 8.21E+10 1.48E+09 2.97E+07 2.41E+08
2.4 15 991 universal 1.567E+11 2.82E+09 5.88E+07 4.76E+08
Mach 2.0 Fleet
2.0 5 532 1993 AESA 8.36E+10 5.02E+08 2.89E+07 2.45E+08
2.0 5 528 universal 8.45E+10 5.04E+08 2.90E+07 2.47E+08
2.0 5 1062 universal 1.60E+11 9.65E+08 5.66E+07 4.78E+08
2.0 15 532 1993 AESA 8.36E+10 1.47E+09 2.89E+07 2.45E+08
2.0 15 528 universal 8.45E+10 1.48E+09 2.90E+07 2.47E+08
2.0 15 1062 universal 1.60E+11 2.82E+09 6.66E+07 4.78E+08
2015 Scheduled Subsonic Air Traffic
Subsonic passenger aircraft (no HSCT fleet) 250E+11  2.32E+09 9.93E+07 1.11E+09
Subsonic passenger aircraft (with 500 M2.4 HSCTs) 2.22E+11  2.05E+09 9.34E+07 1.05E+09
Subsonic passenger aircraft (with 1000 M2.4 HSCTs) 1.97E+11  1.75E+09 1.95E+08 1.32E+09
2015 Cargo Aircraft 5.64E+09 4.91E+07 3.56E+06 2.77E+07

The fuel burned and emissions for the network used in the 1993 AESA
assessment (Baughcum, et. al., 1994) differ somewhat from those reported
earlier . An error in the weight of the aircraft used in the performance
calculations was discovered upon later analysis. Using the corrected weights,
the emission inventories for the 1993 AESA assessment network were rerun.

The total fleet fuel burn for the 500 aircraft fleet increased by about 7% from that

reported earlier (Baughcum, et. al., 1994) for the Mach 2.4 HSCT fleet. In
addition, with the correct (heavier) weight, the supersonic cruise altitudes were
slightly lower than those used in the earlier study. In the earlier report
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(Baughcum, et. al., 1994), the Mach 2.4 HSCT cruise altitudes were in the range
of 59,639-69,098 feet. The corrections in the aircraft weight result in cruise
altitudes about 1100 feet lower for the new scenarios. Similar problems were
discovered and corrected for the Mach 2.0 emission inventories.

In this section, the results for the individual component inventories will be
presented and discussed. In the next section, the overall results and changes
between the different scenarios will be analyzed.

4.1 Mach 2.4 HSCT Fleet Results

Details of the results of HSCT fleet operations for different flight segments
for the Mach 2.4 HSCT fleets are summarized in Tables 4-3 and 4-4. Table 4-5
shows the revised results for the 1993 AESA study. For all cases considered,
the majority of the miles flown, fuel used and NOx emissions occur during
supersonic cruise, where the actual El at cruise is 5.42 (close to the nominal
value of 5). The nominal Ei=15 case was calculated by scaling the EI(NOx) at
cruise by a factor of 3 as described in CR 4592 (Baughcum, et. al., 1994). The
calculated EI(NOx) at cruise for the nominal El=15 case is 16.4 (see Appendix

F).

The calculated fuel burned, emissions, and effective emission indices as
a function of altitude (summed over latitude and longitude) for the Mach 2.4
HSCTs (both EI(NOx)=5 and 15) are tabulated in Appendix F. Also included in
Appendix F are the revised results for the 1993 AESA assessment network.

Table 4-3. Daily mileage, fuel consumption, NOx emissions, and NOx
emission index for the Mach 2.4 HSCT, nominal EI=5 flight
segments. (Universal Network, 500 HSCTs)

Daily Daily

Daity Fuel NOx
Flight Segment Mileage (nmi) (1000 Ibs) (1000 Ibs) EI(NOx)
Taxi out 0 6,376 42 6.56
Initial Climb 96,929 40,780 353 8.65
Supersonic Climb 688,696 91,822 795 8.65
Supersonic Cruise 5,808,829 318,909 1,728 5.42
Supersonic Descent 264,008 1,714 11 6.56
Subsonic Cruise 555,250 34,864 289 8.30
Final Descent 315,230 12,559 82 6.56
Taxiin 0 2,435 16 6.56
Total 7,728,942 509,460 3,316 6.51
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Table 4-4. Daily mileage, fuel consumption, NOx emissions, and NOx
emission index for the Mach 2.4 HSCT, nominal EI=5 flight
segments. (Universal Network, 1000 HSCTs)

Daily Daily

Daily Fuel NOXx
Flight Segment Mileage (1000 Ibs) (1000 Ibs) EI(NOx)
Taxi out 0 14,184 93 6.56
Initial Climb 208,556 85,784 742 8.65
Supersonic Climb 1,369,248 180,857 1,565 8.65
Supersonic Cruise 10,415,248 561,414 3,041 5.42
Supersonic Descent 585,600 3,802 25 6.56
Subsonic Cruise ' 1,353,126 81,939 680 8.30
Final Descent 701,220 27,938 183 6.56
Taxiin 0 5,416 36 6.56
Total 14,632,998 961,333 6,365 6.62

Table 4-5. Daily mileage, fuel consumption, NOx emissions, and NOx
emission index for the Mach 2.4 HSCT, nominal El=5 flight
segments. (1993 AESA assessment network(revised), 500

HSCTs)

Daily Daily

Daily Fuel NOx
Flight Segment Mileage (1000 Ibs) (1000 Ibs) EI(NOx)
Taxi out 0 6,429 42 6.56
Initial Climb 96,929 40,599 351 8.65
Supersonic Climb 666,449 88,815 769 8.65
Supersonic Cruise 5,380,866 295,890 1,603 5.42
Supersonic Descent 256,932 1,668 11 6.56
Supersonic Cruise & Descent 22,686 2,218 19 8.65
Subsonic Cruise 717,101 42,289 351 8.30
Final Descent 317,840 12,663 83 6.56
Taxi in 0 2,455 16 6.56
Total 7,458,803 493,027 3,245 6.58

The three-dimensional character of the emission inventories is illustrated
in Figure 4-1, which shows the daily NOx emissions from a fleet of 500 Mach 2.4
(EI(NOx)=5 ) HSCTs on the universal airline network. The top panel shows
NOx emissions as a function of altitude and latitude (summed over longitude).
This represents the input to a 2-dimensional (altitude and latitude) stratospheric
chemistry model, such as those used in the AESA assessment. Peak emissions
occur at supersonic cruise at northern mid-latitudes. The bottom panel
illustrates the route segments occurring at altitudes above 13 kilometers, which
correspond to supersonic climb and cruise.
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Figure 4-1. NOx emissions for a fleet of 500 Mach 2.4 HSCTs on the
Universal Airline Network, as a function of altitude and latitude (summed
over longitude, top panel) and as a function of latitude and longitude (summed
over the 13-22 km altitude band, bottom panel). (Values greater than maximum
are plotted as black.)

28



The fuel burned and emissions (NOx, hydrocarbons, and CO) as a
function of altitude are shown in Figure 4-2 for fleets of 500 and 1000 Mach 2.4
HSCTs (EI(NOx)=5) on the present universal airline network. Not surprisingly,
the larger fleet has approximately twice as much emissions and shows the
same altitude distribution as the 500 HSCT fleet. Figure 4-3 shows the
cumulative fraction of fuel burn and emissions plotted as a function of altitude
for the two fleet sizes. The additional shorter routes for the 1000 HSCT fleet
results in a larger fraction of the fuel burn and emissions occurring at lower
altitudes for takeoff, climbout, and supersonic climb. Although the majority of
the fuel use and NOx emissions will occur in the 18-21 kilometer altitude band,
a significant fraction of the emissions occurs below 10 kilometers and between
10 and 18 kilometers.

The emission indices as a function of altitude are shown in Figure 4-4.
The variation in emissions as a function of altitude reflect the changes in fuel
burn rate at different stages of the flights and changes in power setting (with
resulting changes in emission indices). Changes in HSCT fleet size have
relatively little impact on the emission indices averaged over all missions.

The geographical distribution of the emissions for the universal airline
network is displayed in Figure 4-5 for fleets of 500 and 1000 Mach 2.4 HSCTs.
For these plots, the emissions for the entire fleet have been been summed over
longitude and then plotted as a function of latitude. The plots show that most of
the HSCT flights will occur at northern midlatitudes. Figure 4-6 shows the
cumulative fraction as a function of latitude for each of the emissions, summing
over the entire altitude range (0-22 km). For both fleet sizes, approximately
20% of the emissions occur in the Southern hemisphere, but the majority occur
north of 30° North latitude.

The emissions injected above 13 kilometers in altitude, which will have
the greatest impact on the stratospheric ozone layer, are shown in Figure 4-7 as
a function of latitude for fleets of 500 and 1000 Mach 2.4 HSCTs. Figure 4-8
shows the cumulative fraction as a function of latitude for each of the emissions,
summing over the 13 to 22 kilometer altitude band. Approximately 60% of the
stratospheric NOx from the HSCT fleets will be injected north of 30° North
latitude.

Growth of the fleet to 1000 active HSCTs causes only small changes in
the geographical distribution. A more detailed discussion of the changes in
emissions as the fleet grows from 500 to 1000 HSCTs will be presented in
Section 5.
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Figure 4-2. Fuel burned and emissions as a function of altitude for
the universal airline HSCT network for a fleet of 500 (dashed line) and
1000 (solid line) Mach 2.4 HSCTs with EI(NOx) of approximately 5 at
supersonic cruise (summed over latitude and longitude).
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function of latitude for the universal airline HSCT network for fleets of 500
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4.2 Mach 2.0 HSCT fleet Results

Details of the results for different flight segments for the Mach 2.0 HSCT

fleets are summarized in Tables 4-6 and 4-7. Table 4-8 shows the revised

results for the 1993 AESA study. For all cases considered, the majority of the

miles flown, fuel used and NOx emissions occur during supersonic cruise,

where the calculated El is 5.24.

The calculated fuel burned, emissions, and effective emission indices as
a function of altitude (summed over latitude and longitude) for the M2.0 HSCTs

(both EI{(NOx)=5 and 15) are tabulated in Appendix G. Also included in

Appendix G are the revised results for the 1993 AESA assessment network for

Mach 2.0 HSCTs.

Since the same passenger demand was used for the Mach 2.0 fleet as
was used for the Mach 2.4 fleet, the geographical distribution of emissions for
the Mach 2.0 case is the same as for Mach 2.4. The altitude distributions are
similar except that the supersonic cruise emissions occur approximately 4000

feet lower.

Table 4-6. Daily mileage, fuel consumption, NOx emissions, and NOx
emission index for the Mach 2.0 HSCT, nominal EI=5 flight

segments. (Universal Network, passenger demand

corresponding to 500 Mach 2.4 HSCTs)

Daily Daily

Daily Fuel NOx
Flight Segment Mileage {(nmi) (1000 Ibs) (1000 Ibs) EI{(NOx)
Taxi out 0 5,752 40 7.00
Initial Climb 87,860 36,689 297 8.10
Supersonic Climb 482,933 66,765 541 8.10
Supersonic Cruise 6,079,332 367,116 1,925 5.24
Supersonic Descent 197,106 1,375 10 6.99
Subsonic Cruise 562,131 32,536 214 6.57
Final Descent 319,578 11,818 83 6.99
Taxiin 0 2,222 16 6.99
Total 7,728,940 524,273 3,125 5.96
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Table 4-7. Daily mileage, fuel consumption, NOx emissions, and NOx
emission index for the Mach 2.0 HSCT, nominal El=5 flight
segments. (Universal Network, passenger demand
corresponding to 1000 Mach 2.4 HSCTs)

Daily Daily
Daily Fuel NOx
Flight Segment Mileage (nmi) (1000 Ibs) (1000 Ibs) ENOx)
Taxi out 0 12,796 90 7.00
initial Climb 188,134 76,870 623 8.10
Supersonic Climb 965,212 131,653 1,067 8.10
Supersonic Cruise 10,963,144 648,318 3,400 5.24
Supersonic Descent ' 437,346 3,052 21 6.99
Subsonic Cruise 1,368,262 76,000 499 6.57
Final Descent 710,892 26,288 184 6.99
Taxiin 0 4,042 35 6.99
Total 14,632,990 979,919 5,918 6.04
Table 4-8. Daily mileage, fuel consumption, NOx emissions, and NOx
emission index for the Mach 2.0 HSCT, nominal El=5 flight
segments. (1993 AESA assessment network (revised),
passenger demand corresponding to 500 Mach 2.4 HSCTs)
Daily Daily
Daily Fuel NOx
Flight Segment Mileage (nmi) (1000 Ibs) (1000 Ibs) EI(NOx)
Taxi out 0 5,800 41 7.00
Initial Climb 87,777 36,453 295 8.10
Supersonic Climb 472,821 65,351 529 8.10
Supersonic Cruise 5,649,821 341,743 1,792 5.24
Supersonic Descent 194,285 1,356 9 6.99
Supersonic Cruise & Descent 11,777 1,146 9 8.10
Subsonic Cruise 720,099 38,788 255 6.57
Final Descent 322,224 11,916 83 6.99
Taxiin 0 2,240 16 6.99
Total 7,458,804 504,792 3,030 6.00

Since the Mach 2.0 and Mach 2.4 HSCT fleets are flown on the same
passenger demand network in this study, the primary difference between the
two fleets is that the Mach 2.0 fleet requires about 6% more aircraft to satisfy the
same passenger demand and the aircraft cruise supersonically about 4000 feet
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lower. Tables of the emissions as a function of altitude for Mach 2.0 are
included as Appendix G.

4.3 Year 2015 Subsonic Fleet Results

For year 2015 subsonic passenger aircraft, 10 jet categories and one
generic turboprop were considered. These are summarized in Table 4-9.
These are the same categories as used in our previous study (Baughcum, et.
al, 1994). Aircraft performance and emissions characteristics were the same as
used in the previous study except that an error in the performance data used for
the P900 aircraft type (> 900 passengers) was corrected, as described in
Section 3. This increased the total projected fuel burn for the all subsonic 2015
scheduled passenger fleet by about 2%.

Results are presented here for the the subsonic passenger fleet in use for
the cases where there are 0, 500, and 1000 Mach 2.4 HSCTs in use on the
universal network. Subsonic cargo aircraft data was not updated from that
presented earlier (Baughcum, et. al., 1994) but is included in the summaries.

Table 4-9. Classes of "Generic" Subsonic Passenger Aircraft Used in the
2015 Scenario Construction

Seating Average
Class Capacity Seats
TBP (turboprop) 0- 49 30
P060 50 - 69 60
P080 70 - 109 85
P120 110 - 139 120
P180 140 - 199 170
P250 200 - 299 250
P350 300 - 399 350
P500 400 - 599 500
P700 600 - 799 700
P900 > 800 900

The results for the three subsonic passenger fleets are summarized by
aircraft type in Tables 4-10, 4-11, and 4-12. Fuel use by subsonic passenger
jets was projected to drop by approximately 11% because of the displacement
caused by 500 HSCTs in operation and 21% in the presence of 1000 HSCTs.
As discussed in Section 5, total fuel usage for the combined fleet of subsonic
and HSCT fleets would increase as HSCTs displace subsonic aircraft.

39



The calculated fuel burn, emissions, and effective emission indices as a
function of altitude (summed over latitude and longitude) for the year 2015
subsonic passenger fleets are tabulated in Appendix G.

Table 4-10 Gilobally Computed Fuel Burned, Emissions, and Emission
Indices by Aircraft Type for 2015 Scheduled Subsonic Airliners if
500 Mach 2.4 HSCTs are in operation on the universal network.

Globally Averaged
Emission Indices

Fuel NOx HC co El El El
File (kg/yr) (kg/yr) (kg/yr) (kg/yr) (NOx) (HC) (CO)
P060 2.63E+09 1.49E+07 1.47E+06 1.44E+07 5.66 0.56 5.50
P0O80 8.67E+09 6.84E+07 2.91E+06 6.59E+07 7.88 0.34 7.60
P120 1.42E+10 1.04E+08 8.02E+06 1.25E+08 7.37 0.57 8.85
P180 2.34E+10 1.73E+08 5.80E+06 1.23E+08 7.39 0.25 5.26
P250A 2.49E+10 2.15E+08 1.64E+07 1.63E+08 8.64 0.66 6.56
P250B 1.65E+10 1.21E+08 1.16E+07 6.23E+07 7.33 0.70 3.77
P350 4.09E+10 4.29E+08 1.48E+07 1.56E+08 10.50 0.36 3.82
P500 5.07E+10 4.74E+08 1.80E+07 2.15E+08 9.33 0.35 4.25
P700 2.24E+10 2.61E+08 4.18E+06 5.46E+07 11.66 0.19 2.44
P900 1.37E+10 1.45E+08 3.02E+06 4.22E+07 10.59 0.22 3.07
TBP 4.13E+09 4.40E+07 7.29E+06 2.41E+07 10.65 1.76 5.83
Total 2.22E+11 2.05E+09 9.34E+07 1.05E+09 9.23 0.42 4.71
Table 4-11 Globally computed fuel burned, emissions, and emission Indices
by Aircraft Type for 2015 Scheduled Subsonic Airliners if 1000
Mach 2.4 HSCTs are in operation on the universal network.
Globally Averaged
Emission Indices
Fuel NOy HC co El El EI
File (kg/yr) (kg/yr) (kg/yr)  (kg/lyr) (NOx) (HC) (CO)
P0O60 2.63E+09 1.49E+07 1.47E+06 1.44E+07 5.66 0.56 5.50
P080 8.67E+09 6.84E+07 2.91E+06 6.59E+07 7.88 0.34 7.60
P120 1.41E+10 1.04E+08 8.01E+06 1.25E+08 7.37 0.57 8.86
P180 2.34E+10 1.73E+08 5.81E+06 1.23E+08 7.39 0.25 5.26
P250A 2.46E+10 2.13E+08 1.63E+07 1.62E+08 8.65 0.66 6.58
P250B 1.31E+10 9.59E+07 9.54E+06 5.11E+07 7.32 0.73 3.90
P350 3.65E+10 3.85E+08 1.38E+07 1.45E+08 10.56 0.38 3.97
P500 4.79E+10 4.49E+08 1.69E+07 2.02E+08 9.36 0.35 422
P700 1.64E+10 1.95E+08 3.61E+06 4.60E+07 11.92 0.22 2.80
P900 5.41E+09 6.10E+07 1.42E+06 1.91E+07 11.28 0.26 3.53
TBP 4.13E+09 4.40E+07 7.29E+06 2.41E+07 10.65 1.76 5.83
Total 1.97E+11 1.80E+09 8.71E+07 9.78E+08 9.16 0.44 4.97
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Table 4-12 Globally Computed Fuel Burned, Emissions, and Emission

Indices by Aircraft Type for 2015 Scheduled Subsonic Airliners if
no HSCT Fleet Exists (revised from NASA CR 4592)

Globally Averaged
Emission Indices

Fuel NOx HC co El El El
File (kglyr)  (kglyr)  (kglyr)  (kglyr) (NOx) (HC) (CO)
PO60  2.63E+09 1.49E+07 1.47E+06 1.44E+07 566 056  5.50
P080  8.67E+09 6.84E+07 291E+06 6.59E+07 7.88 034  7.60
P120  1.42E+10 1.04E+08 8.02E+06 1.25E+08 7.37 0.57 885
P180  2.35E+10 1.73E+08 5.81E+06 1.23E+08 739 025 525
P250A 2.49E+10 - 2.15E+08 1.64E+07 1.63E+08 8.64 066  6.56
P250B 2.10E+10 1.54E+08 1.39E+07 7.59E+07 7.33  0.66  3.61
P350  4.31E+10 4.51E+08 1.52E+07 1.61E+08 1048 0.35 3.74
P500  5.25E+10 4.88E+08 1.86E+07 2.23E+08 9.31  0.35  4.26
P700  3.15E+10 3.61E+08 5.11E+06 6.84E+07 1148 0.16  2.17
P900  2.40E+10 246E+08 4.63E+06 6.66E+07 10.22 0.19 277
TBP 4.13E+09 4.40E+07 7.29E+06 2.41E+07 1065 1.76  5.83
Total 2.50E+11 2.32E+09 9.94E+07 1.11E+09 928 0.40 = 4.44

41



5.0 Analysis and Discussion

5.1 Comparison of HSCT Universal Fleet Emissions with Old
Network Results

The weight corrections discussed earlier resulted in an increase in global
fuel use of 7% by the HSCT fleet and cruise altitudes about 1100 feet lower
than those described earlier ((Baughcum, et. al., 1994) and used in the 1993
AESA assessment. Changing from the 1993 AESA assessment network to the
new universal airline network for the same number of active HSCTs in-service
has little effect (less than 1%) on the global fuel bum or emissions for the HSCT
fleet, when the correct OEW is used, as shown in Table 5-1.

Table 5-1. Comparison of the new universal network fuel use and emissions
with the revised 1993 AESA assessment network results.

Mach 2.4 HSCT EI(NOx)=5 Fuel (kg/year) NOx (kg/year) HC (kgfyear) CO (kg/year)
1993 AESA assessment network 7.64E+10 5.00E+08 2.83E+07 2.33E+08
(500 HSCTs) (Baughcum, et. al.,
1994)
1993 AESA assessment network 8.16E+10 5.37E+08 2.99E+07 2.42E+08
(500 HSCTs)( revised)
new universal network (500 HSCTs) 8.21E+10 5.35E+08 2.97E+07 2.41E+08
difference relative to the 1993 AESA 5.02E+08 -2.63E+06 -2.09E+05 -1.15E+06
network (revised)

Percent change 0.61% -0.49% -0.70% -0.47%

The change in ground rules has a much larger effect on the geographical
distribution of the emissions. This is shown in Figure 5-1 where the 3-
dimensional inventory of emissions calculated for the universal airline network
is compared with the 1993 AESA assessment network (revised to account for
the correct OEW). The top panel shows the increases in NOx emissions as a
function of latitude and altitude when the universal airline network is compared
with the 1993 AESA assessment network results (revised). The bottom panel
shows the decreases in NOx emissions when the universal airline network is
compared with the 1993 AESA assessment network results (revised). In
general, the new universal airline network has the HSCT flying at subsonic
cruise less than in the 1993 AESA assessment network. There are also fewer
emissions at high northern latitudes and more in the Southern hemisphere for
the new network.
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Figure 5-1. Comparison of NOx emissions from the universal airline network

with the revised 1993 AESA assessment network for 500 Mach 2.4 [EI(NOx)=5] HSCTs.
The top panel shows positive changes, while the bottom panel shows negative
changes. (summed over longitude)
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Since the changes in the high altitude emissions are expected to have
the largest effects on ozone impact, the discussion will focus on changes in
stratospheric NOx emissions. Figure 5-2 shows a comparison of the NOx
emissions above 13 kilometers altitude for the 1993 AESA assessment network
(revised) and the new 500 HSCT universal airline network. High altitude NOx
emissions are greater in the southern hemisphere for each of the 10 degree
latitude bands shown here. NOx emissions at extremely high northern latitudes
(>70N) are less than with the old network. The analysis shows a net increase in
the tropics of high altitude NOx emissions compared with the old network. At
northern mid-latitudes the results are approximately the same.
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Figure 5-2. NOx emissions above 13 kilometers as a function of latitude,
comparing the new universal airline scenario with the 1993 AESA
assessment network scenario (revised) for 500 Mach 2.4 HSCTs.

Figure 5-3 shows the differences in fuel burned and NOx emissions at
high resolution (1 degree latitude) as a function of latitude (summed over
longitude). For these cases, the results are shown summed over all altitudes
(the two top figures) and summed over altitudes above 13 km (bottom two
figures). The high resolution plots illustrate that although there are systematic
differences between the two networks in some latitude bands (e.g., the
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Figure 5-3. Differences in fuel burn and emissions between the new universal
HSCT network and the 1993 AESA assessment network (revised) for

a fleet of 500 Mach 2.4 HSCTs with EI{NOx) at cruise of approximately 5,
plotted as a function of latitude. Stratospheric emissions here refer to
emissions above 13 km.
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Southern hemisphere), in other bands the differences are much more
complicated (e.g., 30-40 North latitude).

Figure 5-4 shows the cumulative fraction of NOx emissions above 13
kilometers, emphasizing that in the new network about 15% of the stratospheric
NOXx emissions will occur in the southern hemisphere, compared to 10% for the
old network. Most of the changes are an increase in stratospheric cruise
occurring in the tropics. Since 2-D modeling calculations have indicated that
HSCT emissions in the tropics may have greater impact on stratospheric ozone
than for similar injections at mid-latitudes, these changes are worth noting for
the AESA assessment calculations.
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-90
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Cumulative Fraction NOx Emissions (above 13 km)

Figure 5-4. Cumulative fraction of NOx emissions above 13 km plotted as a
function of latitude, comparing the resuits for the universal airline
network with the revised 1993 AESA assessment network for the
Mach 2.4 HSCT (EI(NOx)=5)).

46



5.2 Fleet Growth Effects

The effect of doubling the HSCT fleet from 500 to 1000 HSCTs on the
universal airline network is summarized in Table 5-2. The global fuel use and
emissions are projected to almost double with the fleet size.

Table 5-2. Comparison of the fuel use and emissions between the 500 and
1000 aircraft HSCT fleets.

Mach 2.4 HSCT EI(NOx)=5 Fuel (kg/year) NOx (kg/year) HC (kg/year) CO (kg/year)
universal network (500 HSCTs) 8.21E+10 5.35E+08 2.97E+07 2.41E+08
universal network (1000 HSCTs) 1.57E+11 1.04E+09 5.88E+07 4.76E+08
difference (1000-2x500) -7.52E+09 -3.11E+07 -5.25E+05 -7.09E+06
% difference (1000-2 x 500) -4.58% 2.91% -0.88% -1.47%

If we compare the NOx emissions injected at altitudes above 13
kilometers (Figure 5-5), it is clear that emissions in some latitude bands
increase at different rates as the HSCT fleet is doubled.
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Figure 5-5. NOx emissions above 13 kilometers altitude as a function of
latitude for 500 and 1000 Mach 2.4 HSCTs on the universal
airline network.
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To illustrate more clearly how the geographical distribution is modified as
the fleet grows, Figure 5-6 shows the NOx emissions as a function of latitude for
a fleet of 1000 Mach 2.4 HSCTs and compares them with the doubled
emissions of the 500 HSCT fleet. In some regions (e.g., southern mid-latitudes,
northern hemisphere tropics), the emissions have more than doubled compared
with the 500 aircraft fleet; while in other regions (e.g., northern midlatitudes), the
emissions have not grown linearly with the fleet size.
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. ' O Doubled 500 HSCTs
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1.006+8

i

0.00e+0

NOx Emissions (kg/year) above 13 km

£ 20-30N

r
0

[
;l
o

Figure 5-6. NOx emissions above 13 kilometers, comparing a fleet of 1000
HSCTs with doubling the results for a 500 HSCT fleet on the
universal airline network.

Although the emission in all latitude bands do not exactly double when
the fleet size doubles, the differences are relatively small in most regions. To
first order, for 2-dimensional model calculations, treating the fleet size as a
scalar appears to be justified. Subtle effects due to transport processes in the
tropics or 3-dimensional effects will need to be evaluated for their sensitivity.
The scenarios developed here should be useful for that purpose.

As shown, simply doubling the number of airplanes flown may not

accurately reflect the distribution of emissions. A higher resolution comparison
of the 1000 and doubled 500 HSCT fleet is shown in Figure 5-7. The top panel
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Figure 5-7. Comparison of NOx emissions from the 1000 HSCT fleet with emissions from
doubling the 500 HSCT fleet on the universal airline network for Mach 2.4

[EI(NOx)=5] HSCTs. The top panel shows positive changes, while the bottom

panel shows negative changes. (summed over longitude)
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of Figure 5-7 shows the regions where the 1000 HSCT fleet has more than
twice the emission levels of the 500 HSCT fleet. The bottom panel shows the
locations where the emissions from the larger fleet are less than twice those of
the smaller fleet. The bottom panel illustrates that flights in northern
midlatitudes are projected to saturate and not increase linearly with fleet size.
By contrast, emissions in the Southem hemisphere (particularly between 30-
45° S latitude) and in the northern tropics (0-30° N latitude) are projected to
increase faster than linear. In addition, emissions for the larger fleet at subsonic
cruise altitudes would increase as new routes are added.

An increase of the fleet size from 500 to 1000 HSCTs would essentially
double the total emissions from the HSCT fleet. However, as illustrated in
Figure 5-7, the increase in fleet size shows growth in different geographical
regions. As the fleet size increases, routes between new city pairs are
introduced (see Appendix C).

Figure 5-8 shows the differences in fuel burned and NOx emissions as a
function of latitude (summed over longitude) between the 1000 HSCT fleet and
doubling the 500 HSCT fleet. The top two figures show the results considering
all altitudes, while the bottom two figures consider only altitudes above 13
kilometers. For stratospheric NOx, emissions at southern mid-latitudes and the
northern hemisphere tropics have grown faster than linear when the fleet
increases from 500 to 1000 HSCTs, while northern mid-latitude emissions have
increased at less than a linear rate.
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Figure 5-8. Differences in fuel burn and NOx emissions between 1000
HSCTs and simply doubling the 500 HSCT fleet, plotted as a function of
latitude for the new universal HSCT network (Mach 2.4 HSCTs with EI(NOx)
at cruise of approximately 5). Stratospheric emissions here refer to
emissions above 13 km.
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As shown in Figure 5-9, the relative partitioning of emissions between the
northern and southern hemisphere is unchanged as the fleet doubles in size.
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Figure 5-9. Cumulative fraction of stratospheric NOx emissions as a function
of latitude for the 500 and 1000 HSCT fleets on the universal
airline network.

5.3 Comparison of Fleet Growth Effects on 2015 Subsonic
Emissions Inventory

The effect of a fleet of HSCTs on the subsonic fleet is summarized in
Table 5-3. As discussed earlier, the corrections made to the P900 subsonic
aircraft performance data files changed the global emissions by about 2%.

Not surprisingly, the fuel burn and emissions from the subsonic fleet
decrease as more HSCTSs are introduced into service. A fleet of HSCTs results
in a drop of about 11% and 21% in total subsonic fleet fuel use for fleets of 500
and 1000 HSCTs, respectively, as HSCTs displace subsonic aircraft. The
combined fuel use of subsonic and HSCT fleets will be discussed in Section
5.4,
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Table 5-3. Comparison of the fuel use and emissions for the subsonic
scheduled passenger fleets with and without the HSCT fleets

Year 2015 Subsonic Passenger fleet  Fuel (kgfyear) NOx (kg/year) HC (kglyear) CO (kg/year)

No HSCT fleet exists (Baughcum, et. 2.45E+11 2.24E+09 9.20E+07 1.09E+09
al., 1994)

No HSCT fleet exists (revised) 2.50E+11 2.32E+09 9.94E+07 1.11E+09
In the presence of 500 M2.4 HSCTs 2.22E+11 2.05E+09 9.34E+07 1.05E+09

(universal network)

In the presence of 1000 M2.4 HSCTs 1.97E+11 1.80E+09 8.71E+07 9.78E+08
(universal network)

5.4 Total 2015 Scheduled Aircraft Emissions for Fleets of 0, 500,
and 1000 HSCTs

The total global emissions for all projected scheduled air traffic scenarios
for 2015 are summarized in Table 5-4. Since the HSCT uses more fuel on a
per passenger mile basis than do subsonic aircraft, global jet fuel use is greater
for the scenarios in which HSCTs are included in the projections. Fuel usage
by scheduled passenger traffic in 2015 with a fleet of 500 HSCTs or 1000
HSCTs is projected to be 21% and 40% higher, respectively, compared to an all
subsonic fleet.

These numbers shown in Table 5-4 include only air traffic due to
scheduled subsonic passenger jets, cargo jets, turboprop aircraft, and HSCTs.
They do not include charter traffic, military, or most of the projected air traffic in
the former Soviet Union. As discussed in Chapter 2, the traffic forecasts for year
2015 are projected based on current air traffic schedules which do not include
much of the internal air traffic within the former Soviet Union. Projections of
charter, military, and former Soviet Union traffic have been done previously by
McDonnell Douglas under contract to NASA. (Landau, et. al. 1994).

Comparisons of NOx emissions as a function of altitude for scheduled air
traffic, with and without an HSCT fleet, were made in our previous work
(Baughcum, et. al,, 1994) and will not be repeated here. The data necessary for
such calculations is included in Appendices F, G, and H of this report.
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Table 5-4.

Summary of fuel use, NOXx, hydrocarbons, and carbon

monoxide for the total scheduled air traffic scenarios for 2015.

Fuel

(kg/year)

NOx
(kg/year)

HC
(kg/year)

CO
(kg/year)

Total 2015 Scheduled Air Traffic
without an HSCT fleet

Total 2015 Scheduled Air Traffic
with a 500 Mach 2.4 HSCT fleet
(EI(NOx)=5) (universal network)

Total 2015 Scheduled Air Traffic
with a 500 Mach 2.4 HSCT fleet
(EI(NOx)=15) (universal
network)

Total 2015 Scheduled Air Traffic
with a 1000 Mach 2.4 HSCT
fleet (EI(NOx)=5) (universal
network)

Total 2015 Scheduled Air Traffic
with a 1000 Mach 2.4 HSCT
fleet (EI(NOx)=15) (universal
network)

Total 2015 Scheduled Air Traffic
with a 500 Mach 2.0 HSCT fleet
(EI(NOx)=5) (universal network)

Total 2015 Scheduled Air Traffic
with a 500 Mach 2.0 HSCT fleet
(EI(NOx)=15) (universal
network)

Total 2015 Scheduled Air Traffic
with a 1000 Mach 2.0 HSCT
fleet (EI(NOx)=5) (universal
network)

Total 2015 Scheduled Air Traffic
with a 1000 Mach 2.0 HSCT
fleet (EI(NOx)=15) (universal
network)

2.56E+11

3.10E+11

3.10E+11

3.59E+11

3.59E+11

3.12E+11

3.12E+11

3.62E+11

3.62E+11

2.37E+09

2.63E+09

3.58E+09

2.89E+09

4.67E+09

2.60E+09

3.57E+09

2.82E+09

4.67E+09

1.03E+08

1.27E+08

1.27E+08

1.49E+08

1.49E+08

1.26E+08

1.26E+08

1.47E+08

1.47E+08

1.14E+09

1.32E+09

1.32E+09

1.48E+09

1.48E+09

1.32E+09

1.32E+09

1.48E+09

1.48E+09

Note: NOx is given as gram equivalent NO2
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An evaluation of the effects of aircraft on the upper troposphere is one
aspect of the NASA Atmospheric Effects of Aviation Project (AEAP). Based on
these scenarios, the introduction of a fleet of Mach 2.4 (EI(NOx)=5) HSCTs
would, change the NOx emissions due to aircraft at altitudes below 13
kilometers from 2.37 x 1010 kilograms/year to 2.27 x 1010 kilograms/year (-4%)
for 500 HSCTs or to 2.15 x 1010 kilograms/year (-9%) for 1000 HSCTs. It is
clear that the emissions of NOx above 13 kilometers (into the stratosphere)
would be much higher with an HSCT fleet than without. As shown in Figure 5-
10, the introduction of a fleet of HSCTs would be expected to decrease the NOx
emissions in the upper troposphere.

3.00e+9
1 Bl Subsonic Aircraft (0 HSCTs)
21 Subsonic + 500 HSCTs
B Subsonic + 1000 HSCT
— 2.00e+9
}
®©
2
E, ‘ -
- Z
g 1.006+9 4 /
gé
Global Total 0-8 km 8-13 km 13-22 km
Altitude Band

Figure 5-10. Total projected NOx emissions from 2015 scheduled air traffic
for different altitude bands for fleets of 0, 500, and 1000 Mach 2.4
HSCTs with EI(NOx) at supersonic cruise of approximately 5.
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5.5 Conclusions

A detailed database of projected 2015 subsonic and HSCT (both Mach
2.0 and 2.4) operational scenarios was developed using a universal airline
network with HSCT fleet sizes of 0, 500, and 1000 active HSCTs. Three-
dimensional data files of fuel burned and emissions (NOx, hydrocarbons, and
carbon monoxide) on a 1° latitude x 1° longitude x 1 km altitude grid were
calculated and delivered electronically to the Upper Atmospheric Data Program
(UADP) system at the NASA Langley Research Center.

The work presented here shows that although the total global fuel burned
and emissions from a fleet of 500 HSCTs is not very sensitive to whether the
universal airline or the 1993 AESA assessment network is used, the
geographical distribution of emissions at stratospheric cruise is sensitive to the
market penetration assumptions used to distribute projected HSCT passenger
demand.

An increase in HSCT fleet size from 500 to 1000 units has been shown to
approximately double emissions at stratospheric cruise. However, as the fleet
grows, emissions in different geographical regions grow at different rates.
Consequently, stratospheric emissions in northern mid-latitudes are not
projected to double as the fleet size doubles, while emissions in the northern
tropics and southern hemisphere mid-latitudes are expected to more than
double.

For an HSCT combustor with a NOx emission index of 5, the analyses
show that the total NOx emissions below 13 kilometers altitude are not very
sensitive to the presence or absence of an HSCT fleet. This suggests that to
first-order the assessment of the effects of an HSCT fleet are largely decoupled
from the assessment of subsonic aircraft effects. In some geographical regions,
however, the changes may be greater (e.g., the North Atlantic).

The aircraft emissions inventories for scheduled air traffic developed in
this study have been combined at NASA Langley with results for non-OAG
scheduled operations (charter, military, and intemal former Soviet Union) to
create inventories of total aircraft emissions in the year 2015. These inventories
are being used by the NASA Atmospheric Effects of Aviation Project (AEAP) in
the 1995 AESA assessment of HSCT ozone impact.

5.6 Database Availability

The inventories of jet fuel burned and emissions (NOx, CO, total
hydrocarbons) have been calculated for projected subsonic and HSCT fleets for
the year 2015. These data will be available on a 1 degree latitude x 1 degree
longitude x 1 km altitude grid by contacting Karen H. Sage
(sage@uadp?2.larc.nasa.gov) at NASA Langley Research Center or by sending
a request to the Atmospheric Sciences Division, NASA Langley Research
Center, Hampton, VA 23681-0001.
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Appendix B - HSCT Route System Gateway Cities

City City City City

Code Name Code Name

ACA Acapuico, Mexico MIA Miami, Florida, USA

AKL Auckland, New Zealand MIL Milan, ltaly

AMS Amsterdam, The Netherlands MNL Manila, Philippines

ANC Anchorage, Alaska, USA MOW Moscow, Russian Republic
ATH Athens, Greece MRU Mauritius, Mauritius

ATL Atlanta, Georgia, USA MSP Minneapolis-St, Paul, Minnesota, USA
BAH Bahrain, Bahrain MUC Munich, Germany

BER Berlin, Germany NAN Nandi, Fiji

BKK Bangkok, Thailand NYC New York, New York, USA
BOG Bogota, Columbia OSA Osaka, Japan

BOM Bombay, India OSL Oslo, Norway

BOS Boston, Massachusetts, USA PAR Paris, France

BRU Brussels, Belgium PEK Beijing, China

BUE Buenos Aires, Argentina PER Perth, Autralia

CAl Cairo, Egypt PHL Philadelphia, Pennsylvania, USA
CAN Guangzhou, China PPT Papeete, Tahiti, French Polynesia
cCs Caracas, Venezuela PTY Panama City, Panama

CHI Chicago, lllinois, USA RIO Rio de Janeiro, Brasil

CMB Colombo, Sri Lanka ROM Rome, italy

CPH Copenhagen, Denmark SCL Santiago, Chile

CVG Cincinnati, Ohio, USA SEA Seattle, Washington, USA
DEL Delhi, India SEL Seoul, Korea

DFW Dallas, Texas, USA SFO San Francisco, California, USA
DHA Dharan, Saudia Arabia SHA Shanghai, China

DKR Dakar, Senegal SIN Singapore, Singapore

DTW Detroit, Michigan, USA SJU San Juan, Puerto Rico

FDF Fort-de-France, Martinique SNN Shannon, Ireland

FRA Frankfurt, Germany STL Saint Louis, Missouri, USA
GUM Guam, Guam STO Stockholm, Sweden

GVA Geneva, Switzerland SYD Sydney, Australia

HAV Havana, Cuba TLV Tel Aviv, Israel

HEL Helsinki, Finland TPE Taipei, Taiwan

HKG Hong Kong, Hong Kong TYO Tokyo, Japan

HNL Honolulu, Hawaii, USA VIE Vienna, Austria

HOU Houston, Texas, USA WAS Washington, DC, USA

JKT Jakarta, Indonesia WAW Warsaw, Poland

JNB Johannesburg, South Africa YHZ Halifax, Nova Scotia, Canada
KHi Karachi, Pakistan YMQ Montreal, Quebec, Canada
KHV Khabarovsk, Russian Federation YVR Vancouver, British Columbia, Canada
LAX Los Angeles, California, USA YYC Calgary, Alberta, Canada

LIM Lima, Peru YYZ Toronto, Ontario, Canada

LIS Losbon, Portugal

LON London, England, UK

MAD Madrid, Spain

MEL Melbourne, Australia

MEX Mexico City, Mexico
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Appendix C. Departure Statistics

This appendix is a table of departure statistics for the universal network
for a fleets of 500 and 1000 active Mach 2.4 HSCTs. For each gateway city-
pair, flight distances for the great circle route, supersonic flight legs, and total
path length are given in nautical miles. Stops enroute are identified in the
column marked via. Block time and total trip times are given in hours with the
fraction of time compared to an all subsonic flight. Daily departures and load
factors are shown for both fleets of 500 and 1000 HSCTs. The first section of
the table shows city pairs used by the 500 unit fleet, while the second section
includes flights used only by the 1000 unit fleet.
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Appendix D. HSCT Routing Table

The following table provides a list of the city paris which make up the
universal HSCT route system. It also includes the waypoints (latitude,
longitude) between each city-pair used to avoid supersonic flight over land.
Great circle routes were flown between city pairs unless waypoint routing was
necessary. If waypoints were used, great circle routes were flown between the
waypoints.
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Appendix E. Universal Airline System Scheduling

The passenger demand for HSCT service between city-pairs is
determined by forecast growth rates and the HSCT market penetration. Once
the demands between city-pairs are determined, an acceptable schedule for the
HSCT fleet must be created. The schedule is built using a Boeing-developed
*Sequential ltinerary” model which dynamically links the cities and demands in
the HSCT route network, finding a suitable set of city-pairs for each airplane to
serve. The model accounts for airport curfews and for passenger-preferred
departure and arrival time "windows". The following is a brief explanation of the
model operation:

(Refer to Figure E-1). At the start of the operational day at city "A®, the
model examines all possible routes that could be flown to carry demand from
city "A", looking ahead one leg beyond the first destination. Passenger
preference time windows for departure and arrival and airport curfews will likely
limit the routes that can be served. In this example, flights are restricted to A-B,
then B-F or B-G.

The first airplane is assigned to route A-B (Figure E-2, I). At B, the model
looks ahead for the routes to serve which will minimize the time on the ground
at B. The model assumes that the minimum ground time for a *turn®, that is the
end of a flight number, is 1.5 hours. The minimum ground time for a through
stop, that is an intermediate stop in the flight required for refueling, is 1.0 hours.
In this example (Figure E-2, Il), serving B-F then F-P will require stopping at F
until the airplane can clear the preference/curfew "window" at P. Since the
ground time to serve B-F-P would be longer than that required to serve B-G and
then G-K, the model assigns the airplane to the latter routes.

As the airplane “flies" the city-pairs, the model tracks accumulated time
for that airplane. The operational day for the airplane (block time for the flights,
ground time for "turns® and through stops) is limited to 24 hours less a set
maintenance interval, since the model logic works with daily demand. The
model uses the 24 hour limit as well as the preference/curfew "windows" in
assigning routes. The time limit is obviously more restrictive near the end of the
operational day.

As airplane number 1 reaches city P, (Figure E-2, 1lI) its operational day
ends with an accumulated time of 20+ hours. At that point airplane number 2 is
assigned to serve the cities that receive demand from P. The model schedules
airplane 2 in the same manner as number 1, linking together cities which have
HSCT demand assigned until the end of the operational day for airplane 2, at
which point airplane 3 is assigned. This process continues until all the city-pair
demand is served, which takes 500 airplanes and 500 "airplane-days" in the
base case. While the model links single airplanes and itineraries sequentially,
he r re th m if multiple airplan r her at th m
ime on th hedul rmin h l.
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"Sequential Itineréry“ Scheduling Model
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Figure E-1. Sequential Intinerary Scheduling Model
Schematic, 1 airplane



"Sequential Itinerary" Scheduling Model

Airplane #1 begins operations
on city pair A - B, and continues
beyond B, minimizing ground time.

End of operational

Cities unreachable K day for #1,
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Figure E-2. Sequential Itinerary Scheduling Model Schematic, 3 airplanes.



Table E-1 shows the details of the scheduling of the first 5 airplanes in
the 1994 HSCT emissions route system. Because of its speed, the HSCT has
the ability to serve a large set of cities and still remain within the
preference/curfew time "windows", which are always defined in local time. Thus
airplane #1 in the example in Table E-1 begins the day in New York at 0800
New York time, flies to Warsaw and back, then on to Tokyo via Seattle, ending
its day at 2023 local time after the short fiight from Tokyo to Manila. Airplane #2
starts at Manila at 2153, and can reach Singapore at 2335, then off to Sydney,
arriving at 0701 the next moming. From Sydney, the airplane can reach Tokyo
at 1131, then to Washington via Seattle, arriving at 0815 local time. Airplane #3
starts from Washington, and ends its day in Guam. Airplane #4 starts in Guam
and ends up in Singapore, airplane #5 starts in Singapore and ends up back in
Singapore after six trips. Airplane #6 starts in Singapore, and ends its day in
Los Angeles. Airplane #7 starts in Los Angeles and ends its day in Seattle and
so on until all demand on all city pairs is satisfied.
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Table E-1. HSCT "Sequential Itinerary" Scheduling Model

Ground  Ground
Local Time Block Time  Time (Hrs)
(Hrs)
Airplane  Flight  Origin Dest. Via Depart Amive  Time (Tumn) (at Via
# # (Hrs) Cities)
1 1 NYC WAW 800 1744 3.8 1.5
1 2 WAW NYC 1913 1703 3.8 1.5
1 3 NYC TYO SEA 1832 1826 8.4 1.0 1.0
1 4 TYO MNL 1925 2023 2.0
Totals 17.9 4.0 1.0
Operational Day 22.8
Hours
2 5 MNL SIN 21563 2335 1.7 1.5
2 6 SIN SYD 105 701 3.9 1.5
2 7 SYD TYO 831 1131 4.0 1.5
2 8 TYO WAS SEA 1301 745 8.2 1.0
Totals 17.8 4.5 1.0
Operational Day 23.3
Hours
3 9 WAS TYO SEA 937 907 8.2 1.2 1.0
3 10 TYO YVR 1018 2114 4.0 1.5
3 11 YVR TYO 2243 1943 4.0 1.5
3 12 TYO GUM 2113 2358 1.7
Totals 17.8 4.2 1.0
Operational Day 23.0
Hours
4 13 GUM TYO 645 728 1.7 1.5
4 14 TYO SYD 858 1400 4.0 1.5
4 15 SYD TPE 1529 1726 4.0 1.5
4 16 TPE SIN 1856 2104 2.1
Totals 11.8 4.5 0.0
Operational Day 16.3
Hours
5 17 SIN MRU 2234 2150 3.2 1.5
5 18 MRU SIN 2320 630 3.2 1.5
5 19 SIN TYO 759 1151 2.9 1.5
5 20 TYO SIN 1321 1515 2.9 15
5 21 SIN TPE 1645 1847 2.1 1.5
5 22 TPE SIN 2016 2224 2.1
Totals 16.4 7.5 0.0
Operational Day 23.8

Hours
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Appendix F. Altitude Distribution of Emissions for Mach 2.4 HSCT
fleets

This appendix contains the tables which summarize the different Mach
2.4 HSCT emission scenarios. For each of the scenarios considered, the fuel
burned and emissions (NOx, CO, and hydrocarbons) were summed over
latitude and longitude and tabulated as a function of altitude in 1 km altitude
increments (the resolution of the data set).

Cumulative fractions of fuel burned and emissions were calculated from
the ground up to provide a simple way to evaluate how the emissions were
distributed vertically. In addition, the effective emission index for each altitude
band was calculated and tabulated.

The global total of fuel burned and emissions were calculated and listed
at the bottom of each table. Also, included is the effective emission index for
NOx, CO, and hydrocarbons, globally averaged over all locations and altitudes.

For the charts shown, the notation 1.00E+08 is equivalent to

1.00 x 108. The emissions are in units of kilograms per year and the emission
indices have units of grams of emissions per kilogram of fuel burned.

US Standard Atmosphere (1976) pressures and temperatures were used
in the calculations. These altitudes correspond to the geopotential altitudes of
the US Standard Atmosphere grid.
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Appendix G. Altitude Distribution of Emissions for Mach 2.0 HSCT
fleets ’

This appendix contains the tables which summarize the different Mach
2.0 HSCT emission scenarios. For each of the scenarios considered, the fuel
burned and emissions (NOx, CO, and hydrocarbons) were summed over
latitude and longitude and tabulated as a function of altitude in 1 km altitude
increments (the resolution of the data set).

Cumulative fractions of fuel burned and emissions were calculated from
the ground up to provide a simple way to evaluate how the emissions were
distributed vertically. In addition, the effective emission index for each altitude
band was calculated and tabulated.

The global total of fuel burned and emissions were calculated and listed
at the bottom of each table. Also, included is the effective emission index for
NOx, CO, and hydrocarbons, globally averaged over all locations and altitudes.

For the charts shown, the notation 1.00E+08 is equivalent to
1.00 x 108. The emissions are in units of kilograms per year and the emission
indices have units of grams of emissions per kilogram of fuel burned.

US Standard Atmosphere (1976) pressures and temperatures were used
in the calculations. These altitudes correspond to the geopotential altitudes of
the US Standard Atmosphere grid.
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Appendix H. Altitude Distribution of Emissions for Year 2015
subsonic fleets ‘

This appendix contains the tables which summarize the different Year
2015 subsonic emission scenarios occurring with fleets of 0, 500, and 1000
Mach 2.4 HSCTs. For each of the scenarios considered, the fuel burned and
emissions (NOx, CO, and hydrocarbons) were summed over latitude and
longitude and tabulated as a function of altitude'in 1 km altitude increments (the
resolution of the data set).

Cumulative fractions of fuel burned and emissions were calculated from
the ground up to provide a simple way to evaluate how the emissions were
distributed vertically. In addition, the effective emission index for each altitude
band was calculated and tabulated.

The global total of fuel burned and emissions were calculated and listed
at the bottom of each tabie. Also, included is the effective emission index for
NOx, CO, and hydrocarbons, globally averaged over all locations and aftitudes.

For the charts shown, the notation 1.00E+08.is equivalent to
1.00 x 108. The emissions are in units of kilograms per year and the emission
indices have units of grams of emissions per kilogram of fuel burned.

US Standard Atmosphere (1976) pressures and temperatures were used
in the calculations. These altitudes correspond to the geopotential (pressure)
altitudes of the US Standard Atmosphere grid.
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Appendix |. 3-Dimensional Scenario Data Format

The three dimensional emission scenario data files calculated by Boeing
were delivered to NASA Langley electronically in a slightly different format than
that used previously (Ref. 1). In addition to fuel and emissions, the total miles
flown within in a cell is also provided. The format is now:

i, j, k; fuel(lb/day); NOx(Ib/day); CO(Ib/day); HC(Ib/day); distance (nautical
miles/day)

Only non-zero values are included in the ASCII data files.

Altitude:

Index k means emissions in the band from altitude k to k+1
i.e. index 19 is emissions in the 19-20 km band
Values run from 0 to 22

Index i means emissions in the band from latitude i to i+1
values run from O to 179
For i<=89 northern hemisphere
index 0 is emissions from equator to 1 degree N
For i>=90 southern hemisphere
index 90 is emissions from equator to 1 degree S
index 179 is emissions from 89S-90S

Longitude: Wrap all the way around the globe.

index j means emissions in the longitude band j to j+1

values run from O to 359

For j<=179 east of prime meridian
index 0 is emissions from 0-1E
index 179 is emissions from 179E-180E

For j>=180 west of prime meridian
index 180 is emissions from -180W - -179W
index 359 is emissions from -1W - 0
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